Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 324(6): E577-E588, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37134140

RESUMEN

Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model. We compared islet function from offspring exposed to WSD throughout pregnancy and lactation and weaned to WSD (WSD/WSD) compared with islets from offspring exposed only to postweaning WSD (CD/WSD) at 1 yr of age. WSD/WSD offspring islets showed increased basal insulin secretion and an exaggerated increase in glucose-stimulated insulin secretion, as assessed by dynamic ex vivo perifusion assays, relative to CD/WSD-exposed offspring. We probed potential mechanisms underlying insulin hypersecretion using transmission electron microscopy to evaluate ß-cell ultrastructure, qRT-PCR to quantify candidate gene expression, and Seahorse assay to assess mitochondrial function. Insulin granule density, mitochondrial density, and mitochondrial DNA ratio were similar between groups. However, islets from WSD/WSD male and female offspring had increased expression of transcripts known to facilitate stimulus-secretion coupling and changes in the expression of cell stress genes. Seahorse assay revealed increased spare respiratory capacity in islets from WSD/WSD male offspring. Overall, these results show that maternal WSD feeding confers changes to genes governing insulin secretory coupling and results in insulin hypersecretion as early as the postweaning period. The results suggest a maternal diet leads to early adaptation and developmental programming in offspring islet genes that may underlie future ß-cell dysfunction.NEW & NOTEWORTHY Programed adaptations in islets in response to maternal WSD exposure may alter ß-cell response to metabolic stress in offspring. We show that islets from maternal WSD-exposed offspring hypersecrete insulin, possibly due to increased components of stimulus-secretion coupling. These findings suggest that islet hyperfunction is programed by maternal diet, and changes can be detected as early as the postweaning period in nonhuman primate offspring.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Embarazo , Animales , Masculino , Femenino , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Occidental/efectos adversos , Primates/metabolismo , Expresión Génica , Islotes Pancreáticos/metabolismo
2.
Sci Rep ; 11(1): 12977, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155315

RESUMEN

The prevalence of maternal obesity is increasing in the United States. Offspring born to women with obesity or poor glycemic control have greater odds of becoming obese and developing metabolic disease later in life. Our group has utilized a macaque model to study the metabolic effects of consumption of a calorically-dense, Western-style diet (WSD; 36.3% fat) during pregnancy. Here, our objective was to characterize the effects of WSD and obesity, alone and together, on maternal glucose tolerance and insulin levels in dams during each pregnancy. Recognizing the collinearity of maternal measures, we adjusted for confounding factors including maternal age and parity. Based on intravenous glucose tolerance tests, dams consuming a WSD showed lower glucose area under the curve during first study pregnancies despite increased body fat percentage and increased insulin area under the curve. However, with (1) prolonged WSD feeding, (2) multiple diet switches, and/or (3) increasing age and parity, WSD was associated with increasingly higher insulin levels during glucose tolerance testing, indicative of insulin resistance. Our results suggest that prolonged or recurrent calorically-dense WSD and/or increased parity, rather than obesity per se, drive excess insulin resistance and metabolic dysfunction. These observations in a highly relevant species are likely of clinical and public health importance given the comparative ease of maternal dietary modifications relative to the low likelihood of successfully reversing obesity in the course of any given pregnancy.


Asunto(s)
Dieta Occidental , Glucosa/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Alimentación Animal , Animales , Biomarcadores/sangre , Glucemia , Femenino , Edad Gestacional , Insulina/sangre , Macaca fuscata , Embarazo
3.
Mol Metab ; 25: 73-82, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036449

RESUMEN

OBJECTIVE: In humans, offspring of women who are overweight or obese are more likely to develop metabolic disease later in life. Studies in lower animal species reveal that a calorically-dense maternal diet is associated with alterations in islet cell mass and function. The long-term effects of maternal diet on the structure and function of offspring islets with characteristics similar to humans are unknown. We used a well-established non-human primate (NHP) model to determine the consequences of exposure to Western-Style Diet (WSD) in utero and during lactation on islet cell mass and function in the offspring. METHODS: Female Japanese Macaques (Macaca fuscata) were fed either control (CTR) or WSD before and throughout pregnancy and lactation. Offspring were weaned onto CTR or WSD to generate four different groups based on maternal/offspring diets: CTR/CTR, WSD/CTR, CTR/WSD, and WSD/WSD. Offspring were analyzed at three years of age. Pancreatic tissue sections were immunolabelled to measure α- and ß-cell mass and proliferation as well as islet vascularization. Live islets were also isolated to test the effects of WSD-exposure on islet function ex vivo. Offspring glucose tolerance was correlated with various maternal characteristics. RESULTS: α-cell mass was reduced as a result of maternal WSD exposure. α-cell proliferation was reduced in response to offspring WSD. Islet vasculature did not differ among the diet groups. Islets from WSD/CTR offspring secreted a greater amount of insulin in response to glucose ex vivo. We also found that maternal glucose tolerance and parity correlated with offspring glucose tolerance. CONCLUSIONS: Maternal WSD exposure results in persistently decreased α-cell mass in the three-year old offspring. WSD/CTR islets secreted greater amounts of insulin ex vivo, suggesting that these islets are primed to hyper-secrete insulin under certain metabolic stressors. Although WSD did not induce overt impaired glucose tolerance in dams or offspring, offspring born to mothers with higher glucose excursions during a glucose tolerance test were more likely to also show higher glucose excursions.


Asunto(s)
Dieta Occidental , Islotes Pancreáticos/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Proliferación Celular , Femenino , Desarrollo Fetal/fisiología , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Lactancia , Macaca , Masculino , Modelos Animales , Embarazo , Primates , Destete
4.
J Vis Exp ; (154)2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31904022

RESUMEN

The measurement of oxygen consumption in spheroid clusters of cells, such as ex vivo pancreatic islets, has historically been challenging. We demonstrate the measurement of islet oxygen consumption using a 96-well microplate designed for the measurement of oxygen consumption in spheroids. In this assay, spheroid microplates are coated with a cell and tissue adhesive on the day prior to the assay. We utilize a small volume of adhesive solution to encourage islet adherence to only the bottom of the well. On the day of the assay, 15 islets are loaded directly into the base of each well using a technique that ensures optimal positioning of islets and accurate measurement of oxygen consumption. Various aspects of mitochondrial respiration are probed pharmacologically in non-human primate islets, including ATP-dependent respiration, maximal respiration, and proton leak. This method allows for consistent, reproducible results using only a small number of islets per well. It can theoretically be applied to any cultured spheroids of similar size.


Asunto(s)
Islotes Pancreáticos/metabolismo , Consumo de Oxígeno , Animales , Macaca fuscata
5.
Islets ; 9(6): 150-158, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29111856

RESUMEN

During pregnancy, maternal ß cells undergo compensatory changes including hypertrophy, hyperplasia, and increased glucose-stimulated insulin secretion (GSIS). Failure of these adaptations to occur can result in gestational diabetes mellitus. The secreted protein, Connective tissue growth factor (Ctgf), is critical for normal ß cell development and promotes regeneration after partial ß cell ablation. During embryogenesis, Ctgf is expressed in pancreatic ducts, vasculature, and ß cells. In the adult pancreas, Ctgf is expressed only in the vasculature. Here, we report that pregnant mice with global Ctgf haploinsufficiency (CtgfLacZ/+) have an impairment in maternal ß cell proliferation, while ß cell proliferation in virgin CtgfLacZ/+ females is unaffected. Additionally, α-cell proliferation, ß cell size, and GSIS were unaffected in CtgfLacZ/+ mice, suggesting that vascular-derived Ctgf has a specific role in islet compensation during pregnancy.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Diabetes Gestacional/metabolismo , Endotelio Vascular/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Páncreas/irrigación sanguínea , Animales , Glucemia/análisis , Proliferación Celular , Factor de Crecimiento del Tejido Conjuntivo/genética , Diabetes Gestacional/sangre , Diabetes Gestacional/patología , Endotelio Vascular/patología , Femenino , Genes Reporteros , Haploinsuficiencia , Heterocigoto , Inmunohistoquímica , Secreción de Insulina , Células Secretoras de Insulina/patología , Mutación con Pérdida de Función , Ratones Endogámicos C57BL , Ratones Transgénicos , Páncreas/metabolismo , Páncreas/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Embarazo , Regulación hacia Arriba
7.
Trends Dev Biol ; 10: 79-95, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29657386

RESUMEN

The Developmental Origins of Health and Disease (DOHaD) Hypothesis postulates that the in utero environment influences postnatal health and plays a role in disease etiology. Studies in both humans and animal models have shown that exposure to either under- or overnutrition in utero results in an increased risk of metabolic disease later in life. In addition, offspring born to overweight or obese mothers are more likely to be obese as children and into early adulthood and to have impaired glucose tolerance as adults. The Centers for Disease Control and Prevention estimates that over 70% of adults over the age of 20 are either overweight or obese and that nearly half of women are either overweight or obese at the time they become pregnant. Thus, the consequences of maternal overnutrition on the developing fetus are likely to be realized in greater numbers in the coming decades. This review will focus specifically on the effects of in utero overnutrition on pancreatic islet development and function and how the resulting morphological and functional changes influence the offspring's risk of developing metabolic disease. We will discuss the advantages and challenges of different animal models, the effects of exposure to overnutrition during distinct periods of development, the similarities and differences between and within model systems, and potential mechanisms and future directions in understanding how developmental alterations due to maternal diet exposure influence islet health and function later in life.

8.
Am J Physiol Endocrinol Metab ; 311(3): E564-74, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27460898

RESUMEN

During pregnancy, maternal ß-cells undergo compensatory changes, including increased ß-cell mass and enhanced glucose-stimulated insulin secretion. Failure of these adaptations to occur results in gestational diabetes mellitus. The secreted protein connective tissue growth factor (CTGF) is critical for normal ß-cell development and promotes regeneration after partial ß-cell ablation. During embryogenesis, CTGF is expressed in pancreatic ducts, vasculature, and ß-cells. In adult pancreas, CTGF is expressed only in the vasculature. Here we show that pregnant mice with global Ctgf haploinsufficiency (Ctgf(LacZ/+)) have an impairment in maternal ß-cell proliferation; no difference was observed in virgin Ctgf(LacZ/+) females. Using a conditional CTGF allele, we found that mice with a specific inactivation of CTGF in endocrine cells (Ctgf(ΔEndo)) develop gestational diabetes during pregnancy, but this is due to a reduction in glucose-stimulated insulin secretion rather than impaired maternal ß-cell proliferation. Moreover, virgin Ctgf(ΔEndo) females also display impaired GSIS with glucose intolerance, indicating that underlying ß-cell dysfunction precedes the development of gestational diabetes in this animal model. This is the first time a role for CTGF in ß-cell function has been reported.


Asunto(s)
Tamaño de la Célula , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Diabetes Gestacional/fisiopatología , Células Secretoras de Insulina/metabolismo , Envejecimiento , Alelos , Animales , Factor de Crecimiento del Tejido Conjuntivo/deficiencia , Factor de Crecimiento del Tejido Conjuntivo/genética , Diabetes Gestacional/metabolismo , Modelos Animales de Enfermedad , Desarrollo Embrionario , Células Endocrinas/metabolismo , Células Endocrinas/fisiología , Femenino , Glucosa/farmacología , Intolerancia a la Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/ultraestructura , Islotes Pancreáticos/irrigación sanguínea , Ratones , Ratones Noqueados , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...